Kitabahas bagaimana menentukan persamaan garis yang melalui dua titik (x 1,y 1) dan (x 2,y 2). Rumus dasarnya sama dengan rumus di atas, yaitu y-y 1 =m(x-x 1). Gradien (m) dapat kita peroleh dari rumus gradien garis yang melalui dua titik. Kalau m pada rumus y-y 1 =m(x-x 1) kita ganti, akan diperoleh bentuk berikut. Langkahlangkah mencari persamaan garis dari dua titik: Cari kemiringan menggunakan rumus kemiringan. Gunakan kemiringan dan salah satu titik untuk menyelesaikan perpotongan y (b). Setelah Anda mengetahui nilai m dan nilai b, Anda dapat memasukkannya ke dalam bentuk perpotongan garis (y = mx + b) untuk mendapatkan persamaan garis. Persamaangaris yang melalui titik (2,7) dan sejajar garis dengan garis 2x+3y−12=0 adalah . A. 2y−3x=8 B. 2y+3x=8 C. 2x−3y=25 D. 2x+3y=25 Gradien garis ax + by + c = 0 adalah m = -a/b Dua garis yang sejajar mempunyai gradien sama m1 = m2 dengan, m1 : gradien garis pertama m2 : gradien garis kedua Persamaan garis yang melalui (x1 Penyelesaian Rumus persamaan garis melalui sebuah titik (x1, y1) dan gradien m adalah: Jadi x1 = 4, y1 = -3 dan m = 2 sehingga persamaan garisnya: 2. Menentukan Persamaan Garis Melalui Dua Titik. Jika diketahui sebuah garis melalui dua buah titik misalnya A (x1, y1) dan B (x2, y2) dengan x1 ≠ x2 dan y1 ≠ y2 maka dapat ditentukan persamaan Tentukanpersamaan garis yang melalui titik a. A (1, 3) dan bergradien 2 b. C (7, 1) dan bergradien 1/5 c. D (3, 0) dan bergradien -1/2 d. E (-2, -3) dan bergradien -1. Kemudian, gambarlah garis tersebut pada bidang koordinat Cartesius. Berilah nama untuk masing-masing garis tersebut. Penyelesaian: Tentukanpersamaan garis yang melalui titik (3, 1) dan tegak lurus dengan garis y = 2x + 5 Pembahasan Dua buah garis saling tegak lurus jika memenuhi syarat sebagai berikut Dua garis yang sejajar memiliki gradien yang sama. Sehingga gradien garis PQ juga 1/2. Koordinat titik P = (10, a + 4) = (10, 6 + 4) = (10, 10) dYhq. Persamaan garis lurus menyatakan sebuah garis lurus dalam bidang koordinat ke dalam sebuah persamaan. Persamaan garis lurus melalui 2 titik dapat dicari atau ditentukan persamaan garisnya. Persamaan garis lurus pada bidang koordinat secara umum dinyatakan melalui bentuk persamaan y = mx + c atau ax + by + c = 0. Ada beberapa cara yang dapat digunakan untuk menentukan persamaan garis lurus. Cara menentukan persamaan garis lurus bergantung pada informasi yang diberikan pada soal. Salah satu bentuk soal dalam persamaan garis lurus adalah menentukan persamaan garis lurus jika diketahui dua titik yang dilalui garis. Bagaimana cara menentukan persamaan garis lurus jika diketahui dua titik? Melalui halaman ini, sobat idschool dapat mencari tahu caranya. Simak penjelasan lebih lengkapnya melalui ulasan di bawah. Table of Contents Rumus Persamaan Garis Lurus Melalui 2 Titik Contoh Soal Menentukan Persamaan Garis Melalui Dua Titik dan Pembahasannya Contoh 1 – Menentukan Persamaan Garis Lurus Melalui 2 Titik Contoh 2 – Menentukan Persamaan Garis Lurus Sebuah garis lurus diketahui melalui dua titik yaitu -6, 0 dan 8, 0 seperti yang ditunjukkan seperti gambar garis lurus di atas. Bagaimana persamaan yang sesuai dengan garis lurus yang melalui 2 titik tersebut? Agar dapat menentukan persamaan garis lurus yang melalui 2 titik, sobat idschool membutuhkan bagaimana rumus umum garis lurus yang melalui dua titik. Misalkan diberikan sebuah garis lurus yang diketahui melalui titik x1, y1 dan x2, y2. Cara untuk menentukan persaman garis lurus tersebut dapat melalui persamaan yang dinyatakan dalam rumus persamaan garis lurus melalui 2 titik berikut. Dengan rumus yang dapat digunakan untuk menentukan persamaan garis lurus melalui 2 titik di atas, sobat idschool dapat menentukan persamaan garis lurus melalui 2 titik pada awal pembahasan. Lihat kembali gambar sebuah garis lurus yang diberikan sebelumnya. Baca Juga Cara Mencari Persamaan Garis yang Saling Tegak Lurus Diketahui bahwa persamaan garis lurus tersebut melalui dua titik yaitu titik 0,8 dan – 6, 0. Sehingga untuk mendapatkan persamaan garis lurus seperti pada gambar di atas, sobat idschool hanya perlu substitusi nilai dua titik tersebut sebagai x1, y1 dan x2, y2 pada persamaan garis lurus yang melalui dua titik. Simak contoh cara menentukan persamaan garis lurus melalui 2 titik seperti cara berikut. Menentukan persamaan garis lurus yang melalui titik 0,8 dan –6, 0 Jadi, persamaan garis lurus tersebut melalui titik 0,8 dan – 6, 0 adalah 4x – 3y + 24 = 0. Baca Juga Cara Menyelesaikan Sistem Persamaan Linear Dua Variabel SPLDV Contoh Soal Menentukan Persamaan Garis Melalui Dua Titik dan Pembahasannya Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Menentukan Persamaan Garis Lurus Melalui 2 Titik Perhatikan gambar di bawah! Persamaan garis yang sesuai dengan gambar di atas adalah …. A. y = 2x + 2 B. y = 2x – 2 C. y = –2x + 2 D. y = –2x – 2 Pembahasan Perhatikan bahwa persamaan garis yang diberikan pada soal melalui dua titik yaitu 0, 2 dan 2, 6. Sehingga persamaan garis yang sesuai gambar pada soal. Jadi, persamaan garis yang sesuai dengan gambar di atas adalah y = 2x + 2. Jawaban A Baca Juga Cara Menggambar Garis Lurus dari Sebuah Persamaan Contoh 2 – Menentukan Persamaan Garis Lurus Persamaan garis yang melalui titik –2, 4 dan 6, 3 adalah ….A. x + 8y + 30 = 0B. x + 8y – 30 = 0C. x – 8y + 30 = 0D. x – 8y – 30 = 0 Pembahasan Titik yang dilalui garis lurus adalah Titik Pertama – 2, 4 → x1 = –2 dan y1 = 4Titik Kedua 6, 3 → x2 = 6 dan y2 = 3 Menentukan persamaan garis yang melalui titik – 2, 4 dan 6, 3y – 4/3 – 4 = x – –2/6 – –2y – 4/–1 = x + 2/88y – 4 = –1x + 28y – 32 = –x – 2x + 8y – 32 + 2 = 0x + 8y – 30 = 0 Jadi, persamaan garis yang melalui titik – 2, 4 dan 6, 3 adalah x + 8y – 30 = 0. Jawaban B Demikianlah tadi ulasan materi cara menentukan persamaan garis melalui 2 titik. Terimakasih sudah mengunjungi idschooldotnet, semoga bermanfaat. Baca Juga Persamaan Garis Lurus Kemiringan garis adalah ukuran kecuraman dan arahnya. Ini didefinisikan sebagai perubahan koordinat y ke perubahan koordinat x garis itu. Itu dilambangkan dengan simbol m. Jika dua titik x 1 , y 1 dan x 2 , y 2 dihubungkan oleh garis lurus pada kurva y = fx, kemiringannya ditentukan oleh rasio selisih koordinat y terhadap x- selisih koordinat Bagaimana cara mencari persamaan garis dari dua titik? Bentuk dua titik digunakan untuk mencari persamaan garis yang melalui dua titik. Formulanya diberikan oleh, y – y 1 = m x – x 1 atau di mana, m adalah kemiringan garis, x 1 , y 1 dan x 2 , y 2 adalah dua titik yang dilalui garis, x, y adalah sembarang titik pada garis. Penurunan Pertimbangkan garis dengan dua titik tetap B x 1 , y 1 dan C x 2 , y 2 . Titik lain A x, y adalah sembarang titik pada garis. Karena titik A, B, dan C bersamaan, kemiringan AC harus sama dengan BC. Dengan menggunakan rumus kemiringan yang kita dapatkan, y – y 1 / x – x 1 = y 2 – y 1 / x 2 – x 1 Mengalikan kedua sisi dengan x – x 1 kita dapatkan, Ini mendapatkan rumus untuk bentuk dua titik dari sebuah garis. Contoh Soal Soal 1. Temukan persamaan garis yang melalui titik 2, 4 dan -1, 2. Penyelesaian Kita punya, x 1 , y 1 = 2, 4 x 2 , y 2 = -1, 2 Temukan kemiringan garis. m = 2 – 4/-1 – 2 = -2/-3 = 2/3 Dengan menggunakan bentuk dua titik yang kita dapatkan, y – y 1 = m x – x 1 y – 4 = 2/3 x – 2 3y – 12 = 2 x – 2 3y – 12 = 2x – 4 2x – 3y + 8 = 0 Soal 2. Temukan persamaan garis yang melalui titik 4, 5 dan 3, 1. Penyelesaian Kita punya, x 1 , y 1 = 4, 5 x 2 , y 2 = 3, 1 Temukan kemiringan garis. m = 1 – 5/3 – 4 = -4/-1 = 4 Dengan menggunakan bentuk dua titik yang kita dapatkan, y – y 1 = m x – x 1 y – 5 = 4 x – 4 y – 5 = 4x – 16 4x – y – 11 = 0 Soal 3. Temukan persamaan garis yang melalui titik 2, 1 dan 4, 0. Penyelesaian Kita punya, x 1 , y 1 = 2, 1 x 2 , y 2 = 4, 0 Temukan kemiringan garis. m = 0 – 1/4 – 2 = -1/2 Dengan menggunakan bentuk dua titik yang kita dapatkan, y – y 1 = m x – x 1 y – 1 = -1/2 x – 2 2y – 2 = 2 – x x + 2y – 4 = 0 Soal 4. Temukan titik potong y dari persamaan garis yang melalui titik 3, 5 dan 8, 7. Penyelesaian Kita punya, x 1 , y 1 = 3, 5 x 2 , y 2 = 8, 7 Temukan kemiringan garis. m = 7 – 5/8 – 3 = 2/5 Dengan menggunakan bentuk dua titik yang kita dapatkan, y – y 1 = m x – x 1 y – 5 = 2/5 x – 3 5y – 25 = 2x – 6 2x – 5y + 19 = 0 Letakkan x = 0 untuk mendapatkan perpotongan y. => 2 0 – 5y + 19 = 0 => 5 tahun = 19 => y = 19/5 Soal 5. Temukan titik potong x dari persamaan garis yang melalui titik 4, 8 dan 1, 3. Penyelesaian Kita punya, x 1 , y 1 = 4, 8 x 2 , y 2 = 1, 3 Temukan kemiringan garis. m = 3 – 8/1 – 4 = -5/-3 = 5/3 Dengan menggunakan bentuk dua titik yang kita dapatkan, y – y 1 = m x – x 1 y – 8 = 5/3 x – 4 3y – 24 = 5x – 20 5x – 3y + 4 = 0 Masukkan y = 0 untuk mendapatkan titik potong x. => 5x – 3 0 + 4 = 0 => 5x + 4 = 0 => x = -4/5 Soal 6. Temukan kemiringan garis yang melalui titik 2, 7 dan -4, 5. Penyelesaian Kita punya, x, y = 2, 7 x 1 , y 1 = -4, 5 Dengan menggunakan rumus yang kita dapatkan, y – y 1 = m x – x 1 => 7 – 5 = m 2 – -4 => 2 = m 2 + 4 => 6m = 2 => m = 1/3 Soal 7. Temukan kemiringan garis yang melalui titik 4, -5 dan 6, 7. Penyelesaian Kita punya, x, y = 4, -5 x 1 , y 1 = 6, 7 Dengan menggunakan rumus yang kita dapatkan, y – y 1 = m x – x 1 => -5 – 7 = m 4 – 6 => -12 = m -2 => -2m = -12 => m = 6 Persamaan Umum Garis Lurus yang Melalui Dua TitikSecara umum persamaan garis lurus yang melalui dua titik berbeda dan yaitu  Berikut ini merupakan contoh menentukan persamaan dari suatu garis lurus *gunakan tombol NEXT and BACK untuk melihat urutan langkah-langkahnyaRumus Khusus untuk Menentukan Persamaan Garis LurusPada kasus khusus andaikan garis lurus tersebut diketahui memotong sumbu x dan sumbu y masing-masing di titik yang berbeda. Misalkan garis lurus memotong sumbu x di a,0 dan memotong sumbu y di 0,b. Maka menggunakan rumus persamaan umum garis lurus diperoleh dapat disederhanakan menjadi atau dapat ditulis sebagai Sehingga secara khusus, bila diketahui titik potong garis dengan sumbu x adalah a,0 dan titik potong sumbu y adalah 0,b, maka persamaan garisnya dapat disusun dengan lebih sederhana menggunakan rumusan Simak contoh berikut ini untuk lebih jelasnyaLATIHAN MANDIRISetelah mencermati contoh di atas, silahkan gunakan kalian berlatih secara mandiri melalui aktivitas di bawah ini. Tuliskan persamaan garis tampil pada kolom PERSAMAAN GARIS Gunakan tombol PERIKSA untuk memeriksa jawaban. Klik SOAL BARU untuk mencoba soal lain. Raih SKOR mu setinggi mungkin !Latihan Menentukan Persamaan Garis Lurus

persamaan garis melalui dua titik